Processing math: 100%

Friday, 22 October 2021

Questions from Differential Equations

 Q1. For the diffrential equation \frac{dy}{dt}+5y=0 with y(0)=1, the general solution is

    a) e^{5t}         b) e^{-5t}        c) 5e^{-5t}            d) e^{\sqrt{-5t}}

Q2. y=e^{-2x} is a solution of the differential equation y''+y'-2y=0

a) True          b) False

Q3.  The differetial equation \frac{dy}{dx}+Py=Q, is a linear equation of first order only if

a) P is a constant But Q is a function of y

b) P and Q are functions of y (or) constants.

c) P is a function of y but Q is a constant.

d) P and Q are function of x (or) constant.

Q4. If c is a constant, then the solution of \frac{dy}{dx}=1+y^2 is

a)y=sin(x+c)          b) y=cos (x+c)         c) y=tan(x+c)          d) y=e^x+c

Q5. The solution of the differential equation \frac{dy}{dx}+y^2=0 is

a) y=\frac{1}{x+c}         b) y=-\frac{x^3}{3}+c c) y=ce^x d) Unsolvable as equation is non-liear

Q6. Biotransformation of an organic compound having concentration (x) can be modeled using an ordinary differential equation \frac{dx}{dt}+kx^2=0, where k is the reaction rate constant. If x=-a at t=0 then solution of the equation is

a)x=ae^{-kt}         b)\frac{1}{x}=\frac{1}{a}+kt         c) x=a(1-e^{-kt})         d)x=a+kt

 Q7. The differential equation \left[1+\left(\frac{dy}{dx}\right)^2\right]^3=C^2\left[\frac{d^2y}{dx^2}\right]^2

a) 2nd order and 3rd degree  b) 3rd order 2nd degree 

c) 2nd order 2nd degree  d) 3rd order 3rd degree.

Q8. The solution of the first order differential equation \frac{dx}{dt}=-3x,~x(0)=x_0 is

a) x(t)=x_0e^{-3t}      b) x(t)=x_0e^{3t}      c)x(t)=x_0e^{-t/3}       d) x(t)=x_0e^{-t}

Q9. Transformation to linear form by substitutiong v=y^{1-n} of the equation \frac{dy}{dt}+p(t)y=q(t)y^n, n>0 will be

a) \frac{dv}{dt}+(1-n)pv=(1-n)q

b) \frac{dv}{dt}+(1+n)pv=(1+n)q

c) \frac{dv}{dt}+(1+n)pv=(1-n)q

d) \frac{dv}{dt}+(1+n)pv=(1-n)q

Q10. If x^2\left(\frac{dy}{dx}\right)+2xy= \frac{2ln x}{x} and y(1)=0 then what is y(e)?

a) e          b) 1          c) \frac{1}{e}          d) \frac{1}{e^2}

Q11. The solution of the differential equation x^2\frac{dy}{dx}+2xy-x+1=0 given that at x=1, y=0 is

a) \frac{1}{2}-\frac{1}{x}+\frac{1}{2x^2} 

        b) \frac{1}{2}-\frac{1}{x}-\frac{1}{2x^2}

         c) \frac{1}{2}+\frac{1}{x}+\frac{1}{2x^2} 

        d) -\frac{1}{2}+\frac{1}{x}+\frac{1}{2x^2}

Q12. The solution of the differential equation \frac{dy}{dx}+2xy=e^{-x^2} with y(0)=1 is

a) (1+x)e^{x^2}     b)(1+x)e^{-x^2}        c) (1-x)e^{x^2}        d)(1+x)e^{-x^2}

Q13. The solution for the differential equation \frac{dy}{dx}=x^2y with the condition that y=1 at x=0 is

a) y=e^{\frac{1}{2x}}         b) ln(y)=\frac{x^3}{3}+4          c) ln(y)=\frac{x^2}{2}         d) y=e^{\frac{x^3}{3}}

Q14. The solution for the differential equation \frac{dy}{dx}=y^2 with initial value y(0)=1 is bounded in the internal is

a)-\infty \leq x\leq \infty    b) -\infty \leq x\leq 1     c) x<1, x>1         d) -2 \leq x\leq 2

Q15. Consider the differential equation \frac{dy}{dx}=1+y^2. Which one of the following can be particular solution of this differential equation?

a)y=tan(x+3)            b)y=tanx +3        c)x=tan(y+3)         d)x=tany+3

Q16. Which of the following is a solution to the differential equation \frac{d}{dt}x(t)+3x(t)=0, x(0)=2?

a)x(t)=3e^{-t}     b)x(t)=2e^{-3t}       c)x(t)=\frac{-3}{2}t^2       d) x(t)=3t^2

Q16. Solution of the differential equation 3y\frac{dy}{dx}+2x=0 represents a family of \\

a) Ellipse         b) Circles         c)Parabolas     d) Hyperbolas.

Q17. The order of the differential equation \frac{d^2y}{dt^2}+\left(\frac{dy}{dt}\right)^3+y^4=e^{-t} is

a) 1         b) 2             c)3            d)4

Q18.The solution of x\frac{dy}{dx}+y=x^4 with condition y(1)=\frac{6}{5}.

Q19. The solution of the differential equation \frac{dy}{dx}-y^2=1 satisfying the condition y(0)=1 is.

Q20.Which one of the following differential equations has a solution given by the function y=5 sin\left(3x+\frac{\pi}{3}\right).

Q21. The order and degree of a differential equation \frac{d^3y}{dx^3}+4\sqrt{\left(\frac{dy}{dx}\right)^3+y^2}=0 are respectively.\\

a) 3 and 2         b) 2 and 3              c)3 and 3              d) 3 and 1

Q22.  Consider the differential equation \frac{dy}{dx}+y=e^x with y(0)=1. Then find the value of y(1) is

Q23.  With K as constant, the possible solution for the first order differential equation \frac{dy}{dx}=3e^{-3x} is

Q24. The solution of the differential equation \frac{dy}{dx}=ky, ~y(0)=c is

Q25. Consider the differential equation \frac{dy}{dx}=(1+y^2)x. The general solution with constant C is

Q26. The solution of the differential equation \frac{dy}{dx}+\frac{y}{x}=x with the condition that y=1 at x=1 is

Q27. The integrating factor for the differential equation \frac{dP}{dt}+k_2P=k_1L_0e^{-k_1t} is

Q28. Which one of the following is a linear non-homogeneous differential equation, where x and y are independent and dependent variable respectively?

a) \frac{dy}{dx}+xy=e^{-x}         b)\frac{dy}{dx}+xy=0         c)\frac{dy}{dx}+xy=e^{-y}         d) \frac{dy}{dx}+e^{-y}=0

Q29.  The solution of the initial value problem \frac{dy}{dx}=-2xy; y(0)=2 is

Q30. The general solution of the differential equation \frac{dy}{dx}=cos(x+y), with c as a constant, is

Q31. The general solution of the differential equation \frac{dy}{dx}=\frac{1+cos 2y}{1-cos 2x}

Q32. Consider the differential equation \frac{dx}{dt}=10-0.2x with initial condition x(0)=1. The response x(t) for t>0 is

Q33. Consider the following differential equation \frac{dy}{dt}=-5y initial condition: y=2 at t=3.

Q34. Consider the following differential equation x(ydx+xdy)cos \frac{y}{x}=y(xdy-ydx)sin\frac{y}{x} which of the following is the solution of the above equation.

Q35. The solution of the equation \frac{dQ}{dt}+Q=1 with Q=0~at~t=0 is

Q36. A curve passes through the point (x=1, y=0) and satisfies the differential equation \frac{dy}{dx}=\frac{x^2+y^2}{2y}+\frac{y}{x}. The equation that describes the curve is 

a)ln\left(1+\frac{y^2}{x^2}\right)=x-1

b)\frac{1}{2}ln\left(1+\frac{y^2}{x^2}\right)=x-1

c)ln\left(1+\frac{y}{x}\right)=x-1

d)\frac{1}{2}ln\left(1+\frac{y^2}{x^2}\right)=x-1

Q37. The solution of the equation x\frac{dy}{dx}+y=0 passing through the point (1, 1).

Q38. If y is the solution of the differential equation y^3\frac{dy}{dx}+x^3=0, y(0)=1 The value of y(-1) is

a) -2         b) -1         c)0        d)1

Q39. For the equation \frac{dy}{dx}+7x^2y=0, if y(0)=3/7 then the value of y(1) 

Q40  The differential equation \frac{dy}{dx}+4y=5 is valid in the domain 0\leq x\leq 1 with y(0)=2.25 The solution of the differential equation is.

Q41. The family of curves represented by the solution of the equation \frac{dy}{dx}=-\left(\frac{x}{y}\right)^n For n=-1 and n=+1 respectively, are

a) Hyperbola and Parabolas b) Circles and Hyperbolas

c)Parabolas and Circles  d) Hyperbolas and circles.

Q42. What is the solution of the differential equation \frac{dy}{dx}=\frac{x}{y}, with the initial condition, at x=0, y=1?

Q43.  Find the solution of the given differential equation \left(\frac{dy}{dx}\right)xln x=y

Q44. The solution of the ordinary differential equation \frac{dy}{dx}+3y=1 Subject to the initial condition y=1 at x=0 is

Q45. One of the points which lies on the solution curves of the following differential equation 2xydx+(x^2+y^2)dy=0 with the initial condition y(1)=1 is

a) (1,1)     b)(0,0)         c)(0,1)     d)(2,1).

Q46. Obtain the differential equation of all circles each of which touches the axis of x at the origin.

Q47. Solve the differential equations given below:

A. (y^2e^{xy^2}+4x^3)dx+(2xye^{xy^2}-3y^2)dy=0.

B. (x^3-3x^2y+2xy^2)dx-(x^3-2x^2y+y^3)dy=0

C. (xy^2-e^{\frac{1}{x^3}})dx-x^2ydy=0.

D. 2ydx-xdy=xy^3dy

E. \frac{dy}{dx}+2xy=x^2+y^2

F. x^2dy+y(x+y)dx=0

Important Links:

1) AKU previous year questions and solution from Matrices




No comments:

Post a Comment

Questions for 1st Sem

Topic: Beta and Gamma Function  Q1. Evaluate \int_0^1 x^4 (1-\sqrt{x})dx Q2. Evaluate \int_0^1 (1-x^3)^{-\frac{1}{2}}dx Q3. Show that $\...