Processing math: 100%

Saturday, 18 December 2021

Questions for 1st Sem

Topic: Beta and Gamma Function

 Q1. Evaluate \int_0^1 x^4 (1-\sqrt{x})dx

Q2. Evaluate \int_0^1 (1-x^3)^{-\frac{1}{2}}dx

Q3. Show that \int_0^{\frac{\pi}{2}} \sin^p \theta \cos^q  \theta d\theta=\frac{\Gamma(\frac{p+1}{2})\Gamma(\frac{q+1}{2})}{2 \Gamma(\frac{p+q+2}{2})}

Q4. Show that \int_0^{\frac{\pi}{2}} \sqrt{\cot \theta} d\theta =\frac{1}{2}\Gamma(\frac{1}{4})\Gamma(\frac{3}{4}).

Q5. Show that \Gamma(n)\Gamma(1-n)=\frac{\pi}{\sin n\pi}, 0<n<1

Q6. Show that \int_0^{\frac{\pi}{2}} \tan^p \theta d\theta =\frac{\pi}{2} \sec \frac{p\pi}{2}

Q7. Express the follwing integrals in terms of Gamma Function

    a) \int_0^1 \frac{dx}{\sqrt{1-x^4}}                b) \int_0^{\frac{\pi}{2}} \sqrt(\tan \theta)d\theta

    c) \int_0^{\infty}\frac{x^c}{c^x}dx                d) \int_0^{\infty} a^{-bx^2}dx

    e) \int_0^1 x^5 [log(1/x)]^3 dx

Q8. Prove that \Gamma(m)\Gamma(m+\frac{1}{2})=\frac{\sqrt{\pi}}{2^{2m-1}}\Gamma(2m)



No comments:

Post a Comment

Questions for 1st Sem

Topic: Beta and Gamma Function  Q1. Evaluate \int_0^1 x^4 (1-\sqrt{x})dx Q2. Evaluate \int_0^1 (1-x^3)^{-\frac{1}{2}}dx Q3. Show that $\...