Processing math: 100%

Wednesday, 24 June 2020

Distribution Functions

    

Random Variable: A random variable on a given probability space (\Omega, \tilde{A}, P[.]), denoted by X, is a function X(.):\Omega \rightarrow R    such that the set \{w \in \Omega : X(w) \leq x \} as \{X \leq x \}\in \tilde{A} for each x\in R.

It is customary to write the set \{w \in \Omega: X(w)\leq x\} as \{X \leq x\}.

Remarks 
  1.  A random variable X is a function such that X(w) is a real number for each outcome w of \Omega.
  2. For each real number x, the set \{w\in \Omega : X(w) \leq x\} is an event, since it belongs to \tilde{A}.
  3. Every real-valued function defined on \Omega may not be a random variable.

Example 1. The sample space of the experiment of tossing a coin is \Omega = {H, T}.

Define X(.) : \Omega \rightarrow R as   X(H)=1 and X(T)=0.    .......(1)
Thus X(.) associates a real number with each outcome of the experiment. 
Now we show that A_x=\{w\in \Omega : X(w)\leq x\}
We know \tilde{A}=\{\phi, \{H\}, \{T\}, \Omega\}
Using (1), we see that for x<0, A_x = \phi \in \Omega,
                                    for 0\leq x <1, A_x={T}\in \Omega
                                    for x\geq 1, A_x = {H, T}=\Omega \in \Omega
Hence A_x \in \Omega for each x\in R and so X(.) is a random variable.

Example 2. Consider a sample space  (\Omega, \tilde{A}, P[.]), where \Omega = \{a, b, c, d\} and \tilde{A}=\{\phi, \{a\}, \{b, c, d\}, \Omega\}
Define X(.) : \Omega \rightarrow R as X(a)=0, X(b)=0 and X(c)=X(d)=1 ,,... (1)
Thus X(.) associates a real number with each outcome of the experiment. 
Now we show that A_x=\{w\in \Omega : X(w)\leq x\}
We know \tilde{A}=\{\phi, \{a\}, \{b, c, d\}, \Omega\}
Using (1), We see that for x<0, A_x = \phi \in \Omega
                                      for 0 \leq x < 1, A_x = \{a, b\} \notin \Omega    
Hence A_x \notin \Omega for each x\in R and sso X(.) is not a random variable.


Exercises:

  1. The sample space of the experiment of the tossing a die in \Omega=\{1, 2, 3, 4, 5, 6\}. Then the variable X(.) : \Omega \rightarrow R defined as X(w)=w; w=1, 2, 3, 4, 5, 6 is a random variable.

  2. The constat function X(.):\Omega \rightarrow R defined as X(w)= k~ \forall~ w~ \in \Omega , is a random variable.

  3. Give two examples of random variables in which, one is random variable and other is not a random variable.

Indicator Function: If A is any subset of \Omega, then the indicator function of A, denoted by I_A(.), is a function I_A(.): \Omega \rightarrow \{0, 1\} such that 
I_A(w) = \left\{ \begin{array}{ll} 1, & if~ w\in A\\0, & if~ w\notin A \end{array}\right.
Examples:  
  1. I_{0,1}(x)=\left \{ \begin{array}{ll} 0& if~0<x<1 \\ 0, & otherwise \end{array} \right.
  2.  The function f:R\rightarrow R defined by f(x) = \left\{\begin{array}{ll}0, & for~ x\leq 0\\1, & for~ 0<x<1\\2, & for x\geq 1\end{array}\right.
Can be written as f(x) = I_{(0,1)}(x)+2I_{(1, \infty)}(x).

Remark:  I_A is a random variable.

Properties of Indicator Function:

  1. I_{\Omega}(w) = 1, I_{\phi}(w)=0
  2. I_{\bar{A}}(w) = 1-I_A(w) for each A\in \tilde{A}.
  3. I_{A\cup B}(w) = max{I_A(w), I_B(w)}
  4. I_A^2(w) = I_A (w) for A \in \tilde{A}
Cumulative Distribution Function: The cumulative distribution function or simple distribution function of a random variable X, denoted by F_X(.), is defined as a function F_X(.):R\rightarrow [0,1] such that
F_X(x)=P[X\leq x], \forall x\in R. This implies that 0\leq F_X(x) \leq 1.
Recall that \{X\leq x\}=\{w:X(w) \leq x\}
This implies that 0\leq F_x(x)\leq 1. Sometimes we write F(x) instead of F_X(x).

Properties of Distribution Function:

    If F_X(.) is the distribution function of the random variable X and a < b, then
  1. F_X(a) \leq F_X(b)~for~ a<b \Rightarrow Distribution function is monotonically increasing function.
  2. F_X(.) is continuous from the right i.e., lim_{n\rightarrow} F_X(x+h)=F_X(x).
  3. F_X(-\infty) = lim_{x\rightarrow -\infty} F_X(x)=0 and F_X(\infty) = lim_{x\rightarrow\infty} F_X(x)=1.
Discrete random variable: A random variable X is said to be discrete if the range of X is countable i.e. X takes the values  x_1, x_2, x_3,...x_n,...The countable values of  X are called the mass point of X. The distribution function of a discrete random variable X is called a discrete distribution function.

Discrete Density Function: If X is a discrete random variable with distinct values x_1, x_2,..., x_n,.... then the function f_X(.):R\rightarrow [0, 1], satisfying

f_X(x) = \left\{ \begin{array}{ll}P[X=x_i], & if~ x=x_i, i=1, 2,..., n\\ 0, & if~x\neq x_i, \forall i \in N\end{array}\right.
is called the discrete density function of X or prabability mass function or probability function of X. The value f_X(x_i) or f(x_i) or is called the mass associated with the mass point x_i such that
  1. f(x_i)>0~ for~ i=1, 2,.....,
  2. f(x)=0~for~x\neq x_i, i=1, 2,....
  3. \sum_{n=1}^{\infty} x_n = 1 

Example 1. A random variable has the following probability distribution:

 x              0          1     2     3     4     5     6     7     8
 p(x)     k     3k    5k    7k    9k   11k  13k  15k  17k
  1. Determine the value of k.
  2. Find P[X < 4], P[X\geq 5], P[0<X<4]
  3. Find the distribution function.
  4. Find the smallest value of x for which P[X \leq x]>\frac{1}{2}.
Solution: 
  1. Here f(x)=p(x) \Rightarrow \sum p(x) = 1 \Rightarrow [k+3k+5k+7k+9k+11k+13k+15k+17k]=1  \Rightarrow k=\frac{1}{81}.
  2. P[X<4]=P[X=0]+P[X=1]+P[X=2]+P[X=3]=k+3k+5k+7k=\frac{16}{81}                                     P[X\geq 5] = P[X=5] + P[X= 6]+ P[X=7] +P[X=8]=11k+13k+15k+17k = \frac{56}{81}             P[0<X<4]=P[X=1] + P[X=2]+P[X=3] = 3k +5k+7k = \frac{15}{81}
  3. If F(x) is the distribution function then
 x0          1 2 3     4 5 6 7 8
 f(x)=p(x) 1/81 3/81 5/81 7/81 9/81 11/81 13/81 15/81 17/81
 F(x)=P[X\leq x] 1/81 4/81 1/9 16/81 25/81 4/9 49/81 64/81 1

        4. As we know that \frac{4}{9} < \frac{1}{2} and \frac{49}{81}>\frac{1}{2}, therefore from the distribution table, we find that F(x) = P[X\leq x] >\frac{1}{2} for x=6.


Exercises:

  1.  Let p(x) be the probability function of a discrete random variable X which assumes the values x_1, x_2, x_3, x_4   such that 2p(x_1)=3p(x_2)=p(x_3)=5p(x_4). Find probability distribution and cumulative distribution of X.

  2. Let X be a random variable such that P[X=-2]=P[X=-1], P[X=2]=P[X=1] and P[X>0]=P[X<0]=P[X=0]. Obtain the probability mass function and its distribution function.

  3. A random variable X can take all non-negative integral values, and the probability that X takes the value r is proportional to \alpha^r where (0<\alpha <1). Find P[X=0].

  4. A random variable X takes values 0, 1, 2, ....., with probability proportional to (x+1)(\frac{1}{5})^x. Find the probability that X\leq 5.



*** THE END ***

No comments:

Post a Comment

Questions for 1st Sem

Topic: Beta and Gamma Function  Q1. Evaluate \int_0^1 x^4 (1-\sqrt{x})dx Q2. Evaluate \int_0^1 (1-x^3)^{-\frac{1}{2}}dx Q3. Show that $\...