Loading web-font TeX/Math/Italic

Thursday, 25 June 2020

Continuous Random Variable and Expectation

Continuous Random variable and Probability Density Function: A random variable X with F_X(.) as distribution function, is called continuous if there exists a function such that f_X(.):R \rightarrow [0,1] such that F_X(x)=\int_{-\infty}^{\infty}f_X(t)dt~~ for~ all~ x\in R  ....(1)

The function f_X(.) or f(x) is called the probability density function (p.d.f) of C or simply density funtion of X. From the relation (1), we observe that f_X(x)=\frac{dF_X(x)}{dx}

Properties of p.d.f.:

  1. f(X)\geq 0 for all x \in R
  2. \int_{-\infty}^{\infty} f(x) dx=1
  3. P[a< x \leq b]=\int_a^b f(0) dx, for $a<b.

Various measures of central tendency, dispersion, moments and expected value:

Let X be a random variable with density function f_X(x).

    1. Mean of X, denoted by \mu_x or E(X), is defined as:

        \mu_x or E(X)=\int_{-\infty}^{\infty} xf_X(x) dx. (X is a continuous random variable)

        Similarly, E(X^2)=\int_{-\infty}^{\infty} x^2 f_X(x)dx

        If X is a discrete random variable with mass points x_1, x_2,...., x_n,...; then

        \mu_x or E(X)=\sum_{i=1}^{\infty} x_i f_X(x_i)

     2. Variance of X denoted by \sigma_x^2 or var[X], is defined as 

        \sigma_X^2 or var[X]=\inf_{-\infty}^{\infty}(x-\mu_x)^2f_X(x) dx  (X is a continuous random variable and \mu_x is the mean)

        If X is discrete random variable with mass points x_1, x_2, ....x_n,.....; then

        \sigma_X^2 or var[X]=\sum_{i=1}^{\infty}(x_i -\mu_x)^2 f_X(x_i).

         Also var[X]=E[X^2]-{E(X)}^2. This is useful formula to determine var[X]

    3. Standard deviation of X, denoted by \sigma_x is defined as \sigma_x =+\sqrt{Var[X]}

    4. Median (M) of a continuous random variable X is given by the relation

        \int_{-\infty}^M f(x)dx=\frac{1}{2}=\int_M^{\infty} f(x) dx

    5. Mean deviation about the mean \mu_x is defined as M.D. =\int_{-\infty}^{\infty} |x-\mu_x|f_X(x)dx

    6. The first and third quartiles, denoted by Q_1 and Q_3 respectively are given by

\int_{-\infty}^{Q_1}f(x)dx=\frac{1}{4}~and~\int_{-\infty}^{Q_2} f(x)dx=\frac{3}{4}

    7. Mode is the value of X for which f(x) is maximum. The modal value of x is given by the relations:

f_x^{'}=0~ and~ f_X^{''}<0.

    8. The expectation or expected value of the function g(x) of a rand om variable X with f_X(x)as p.d.f., denoted by E[g(X)], is defined as:

            i) E[g(X)]=\sum_{n=1}^{\infty} g(x_n)f_X(x_n), where X is discrete random variable with mass points x_i, x_2,...., x_n,.......;(provided the series is absolutely convergent).

            ii) E[g(x)=\int_{-\infty}^{\infty} g(x)f_X(x)dx, where X is a continuous random variable (provided \int_{-\infty}^{\infty} |g(x)|f_x(x)dx < \infty).

Properties of Expectation:

  1. E[c]=c, c being a constant.
  2. E[c.g(x)]=c.E[g(x)], c being a constant.
  3. E[c_1.g_1(x)+c_2.g_2(x)]=c_1.E[g_1(x)+c_2.E[g_2(x)], here c_1 and c_2 are any real constants.
  4. E[g_1(x)]\leq E[g_2(x)], provied g_1(x)\leq g_2(x)~ \forall x\in R.
  5. If g(x)=x then E[g(x)]=E[X] is the mean of X.
  6. If g(x)=(x-\mu_x)^2, then E[g(x)]=var[X].
  7. If g(x)=(x-\mu_x)^r, then E[g(x)]=\mu_r, which is the rth moment about the mean \mu_r^{'}
  8. If g(x)=(x-a)^r, then E[g(x)]=\mu_r^{'}, which is rth moment about the point x=a.
  9. If g(x)=x^r, then E[g(x)]=E[X^2]=\mu_r^{'} which is the rth moment about the point x=0.
Example 1. The function f(x)=ae^{-\alpha x}.I_{(0, \infty)}, \alpha >0
is a p.d.f.

Solution: Consider \int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} \alpha e^{-\alpha x}. I_{(0, \infty)}dx =\int_0^{\infty}\alpha e^{-\alpha x}dx=\left[ -e^{-\alpha x}\right]_0^{\infty}=-(0-1)=1

Hence the given function is a p.d.f.

Example 2. Let X be a continuous random variable with p.d.f f(x)=\tau e^{-\tau x} ~ for x\geq 0

E[X]=\int_0^{\infty} x.f(x) dx = \int_0^{\infty} x. \tau e^ {-\tau x} dx
=\tau \left[ \left[ \frac{x. e^{-\tau x}}{-\tau}\right]_0^{\infty} +\frac{1}{\tau} \int_0^ {\infty} e^{-\tau x}dx\right] = \tau [0-\frac{1}{\tau ^2}[e^{-\tau x}]_0^{-\infty}=\frac{1}{\tau}
 

No comments:

Post a Comment

Questions for 1st Sem

Topic: Beta and Gamma Function  Q1. Evaluate \int_0^1 x^4 (1-\sqrt{x})dx Q2. Evaluate \int_0^1 (1-x^3)^{-\frac{1}{2}}dx Q3. Show that $\...